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We investigate bound states of a composite system consisting of a charged 
particle orbiting a neutral, stationary magnetic dipole. We find all bound states 
are metastable and none exist with angular momentum less than eleven. Our 
calculation is performed in two space dimensions. 

1. INTRODUCTION 

Composite models of quarks and leptons are currently a popular topic 
of theoretical investigation although there is no direct experimental evidence 
for any internal structure. Two of the prime reasons for this popularity are 
the proliferation of quarks and leptons and their apparent grouping into 
families. If quarks and leptons are assumed to be elementary, the first fact 
creates a contradiction with the esthetically pleasing idea that all matter is 
constructed using a small number of elementary building blocks. The 
second fact can be readily understood if an underlying structure exists. An 
explanation for the existence and properties of quark-lepton families would 
then parallel the historical explanations of the periodicity of the elements 
using an atomic model and the grouping of hadrons into families using a 
quark model. 

Most approaches to composite models concentrate on the properties 
required by the constituents so that the known families of the quarks and 
leptons can be constructed; see, for example, Greenberg and Nelson (1974), 
Bars and Gunaydin (1980), Derman (1980), Harari (1979), Barbieri, Maiani, 
and Petronzio (1980), DeRujula (1980), and Terazawa and Akama (1980). 
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We report here on progress of an investigation which is similar in spirit to 
those by Kopper and Durr (1981) and (1982), Greenberg and Sucher (1981), 
Bander, Chiu, Shaw, and Silverman (1982), and Tomozawa (1982). We 
examine a specific dynamical structure, namely, magnetic binding of two 
constituents--one a magnetic dipole and the other an electric charge. The 
ultimate hope of this type of approach is that it will be possible to explain 
why all quarks and leptons have spin-I/2, to understand the arrangement 
of quarks and leptons into families, and to calculate--among other dynami- 
cal properties--the decay rates of the heavier quarks and leptons. Here we 
restrict our attention to the properties of leptons since their lack of color 
makes them simpler than quarks. 

It must be considered somewhat heretical to think electromagnetism 
could be the interaction which binds together constituents within an elec- 
tron. On the other hand, the electron-muon mass ratio being a simple 
multiple of the fine structure constant, me/m~, = 2a /3 ,  certainly suggests 
an electromagnetic origin for differentiating between lepton families. Fur- 
thermore, Barut and Kraus (1976) have shown that under certain circum- 
stances, systems bound with a magnetic force can have a radius comparable 
to or smaller than the experimental upper limit on the radius of the electron, 
so the magnetic force is capable of the strong binding required. 

Our ideas are not new, but their specific application to composite 
lepton models has not been made in this way before. Barut and coworkers 
(Barut, 1981, 1980, 1979) have considered magnetically bound compo- 
site models of leptons but have used known particles as the constituents. 
Much earlier, Schild (1963) studied the extreme relativistic motion of a 
point charge in a magnetic dipole field both classically and using Bohr- 
Sommerfeld quantization. Schild's work is similar in spirit to ours in that we 
have chosen not to identify the constituents with known particles. By 
specifying the properties of these constituents, we push back to another level 
of understanding the nature of the constituents. 

In earlier work (Mainland and Scott, 1981, 1982) we considered, within 
the framework of a two-dimensional, nonrelativistic calculation, a bound 
state consisting of a charged particle and a charged magnetic dipole. From 
numerical calculations, we found a large gap in the allowed values of orbital 
angular momentum of the system for a certain range of the strength of the 
dipole. The s state was always allowed while the orbital angular momenta l 
for other states were restricted to the range l >/11 for a sufficiently small 
magnetic dipole moment. The states with zero orbital angular momentum 
are the most tightly bound so if this mechanism were operable in a realistic 
composite model of leptons, it could explain why the observed leptons all 
have spin-I/2. 
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2. THE RELATIVISTIC, CHARGE-NEUTRAL-DIPOLE 
SYSTEM 

In this work, we consider a spin-0 particle with a mass m and a charge 
q orbiting an electrically neutral magnetic dipole moment fixed at the 
origin. We have employed the Klein-Gordon equation for the orbiting 
particle in order to include relativistic effects. Since there is no Coulomb 
interaction, the calculation is greatly simplified. In addition, since the 
Coulomb interaction is responsible for all !---0 bound states, they will be 
absent here. We find that in this model there is a finite, lower limit on the 
allowed values of orbital angular momenta: ! >/11. Work is in progress on 
an extension of this model which includes a Coulomb interaction. Because 
the magnetic potential resulting from a magnetic dipole is cylindrically--but 
not spherically--symmetric, we are unable to separate the Klein-Gordon 
equation in three dimensions but can do so in two dimensions, so we restrict 
our attention to the latter case. In cylindrical coordinates the magnetic 
potential I resulting from a dipole is [see Jackson (1962)] A ( r ) =  
( /~o/4~rr2)~.  Making a minimal substitution in the time-independent 
Klein-Gordon equation yields 

E2~p---[c2(- ih~-~--~-qAx)2+c2(- ih~-~-f-qhv)2-t-m2c4]tp (1) 

where A x = -(/*~0/47rrZ)sinq~, A v = (/,/x0/4rrrZ)cosqS, and tanq5 = y / x .  
Rewriting the equation in cylindrici~l coordinates 

E2~b = _hZc  2 + 1 0 + .h 0 q~fz~ ~ (2) 
r 07r c2 - l r  Odp 4~rr z 

Because the magnetic field of the dipole is cylindrically symmetric, the 
Hamiltonian commutes with the z component of angular momentum and 
the wave function ~p can be written as a simultaneous eigenstate of both 
operators: 

~p = eit'~x( r ) (3) 

The radial equation for X is then immediately found to be 

d2x  + 1 d X 1 ql~Ito + h z ~  X = 0  (4) 
dr 2 r dr r 4~rhr 2 

tWe use Systeme Internationale units in this paper. 
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To solve this equation we use the WKB approximation and make the 
independent variable transformation r - - e x p ( z )  to put equation (4) into 
standard form: 

e2 [ 2m c4  )2] 
d 2 x  + lhe-'- q~t*o 
dz ----T -~-  c 2 4~r e-2~ X = 0 (5) 

The WKB quantization condition [see Park (1974) and Morse and Feshbach 
(1963)] is immediately seen to be 

(n+l/2)Trh=f:Ze:[e2_(Ihe-:-fle 2-')21 t/2 
- I  

dz (6) 

w h e r e  E 2 =  (E  2 -  m2c 4) / c  2 and fl = q ~ o / 4 r r .  The turning points z 1 and 
z 2 are solutions of the equation 

0 = e 2 - ( l h e - :  - f i e -  2:)2 (7) 

Listed in order of increasing size, the three positive turning points are 
readily found to be 

(12h2 +4ef t )  1 /2-  lh 
ea t  = r l  = 2e 

- (12h2 - 4eft)x/2+ lh 
e"2  = r2 = 2 e  

(/2h2 -4eft)I/2+ lh 
e : '  - r3 = 2 e  ( 8 )  

The term ( lhe - :  - f i e - 2 : )  2 = ( l h / r  - f l / r 2 )  2 acts as an effective potential 
~rr and is plotted as a function of r in Figure 1. Values of l = 4 and / = 8 
have been used to show how the shape of the potential changes with orbital 
angular momentum. Note that the well in which the particle of mass m and 
charge q is bound becomes deeper and narrower as l increases. Since 
~ff >/0 and approaches zero as r goes to infinity, all bound states are 
metastable. For small values of orbital angular momentum, the effective 
potential well is not sufficiently deep to create a metastable state. For 
successively larger values o f / ,  however, the well changes shape and its area 
increases until, at some value of l, a metastable state is created. Such 
metastable bound states occur only for e 2 less than the maximum height of 
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Fig. I. Effective potential for the charge-magnetic dipole system, 

the barrier or for 

12h2 

e<  4---if- (9) 

which is identical to the condition that there be three real, positive turning 
points. 

The phase integral in (6) is evaluated by changing to the independent 
variable x = V/-~e - :  - lh/27'-~. In terms of x the quantization condition (6) 
becomes 

( : i~ 2 X 2 ( n + l / Z ) ~ r h  - 2 _ _ _ _  ,2 2/21J2 ( 4fl x + ~ dx (10) 

where x 1 = [12h2/4fl - e] 1/2 and x 2 = [12h2/4fl + e] x/2. Integrating by parts 
and using the fact e 2 - ( x  2 -  12h2/4~8) z vanishes at the turning points x~ 
and x=, (10) takes the form 

[2x=-(a/#)x]dx 
(11) 

The integral can be readily evaluated (Dwight, 1966) with the result that the 
quantization condition becomes 

(12) 
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where E(k) is the complete elliptic integral of the second kind and 

2e ]1/2 
k =  ( r - h V 4 # ) +  

(13) 

We note that k ~< 1 and examine two extreme cases. The first occurs 
when e=  12h2/4~ (the maximum height of the potential barrier). Lower 
energy states actually occur for this case because lower values of the orbital 
angular momentum are allowed. From (13), we see that the above condition 
on e implies k =1. Since the phase integral is a maximum under these 
conditions, it follows from the quantization that 

n + 7rh ~ -2vF f i  -~-fi-+e E(k =1)+21h (14) 
= 12h2/4fl 

Using [see Dwight (1966)] E(k)=1,  (14) yields the constraint 

(2n +l)~r  
/>_. (15) 

~" -2~ 

Taking n = 0, the minimum value of orbital angular momentum for meta- 
stable states is found to be 11. 

The other extreme case corresponds to metastable states with energies 
substantially below the relative maximum of the effective potential which 
occur for / > 11 and correspond to e << 12h2/4~ or k << 1. E(k) can now be 
expanded in a power series [see Dwight (1966)] in k, 

~r( 2eft 5t2/~2 q_ ) 
1 -  . . . .  z ' h '  ' k << 1 (16) 

The quantization condition then becomes 

1 ) ~ ezfl 2 
,1+ ~ Irh - 2 13h 3 (17) 

or, in terms of the original variables, 

E :  = m2c 4 + 16~r2c2h4(2n +1)13 (18) 
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By using the approximate relation (16) in the constraint (9) we arrive at 
the condition 1 > 16(2n + 1). Since the minimum value of n is zero, this 
yields a minimum value of 17 for the orbital angular momentum. Within the 
context of the WKB approximation, however, we found the exact result for 
this quantity to be 11. The difference between these values simply reflects 
the error made in using the power series expansion for E(k) in (16) when 
k = l .  

When we included a Coulomb interaction in a nonrelativistic version of 
this model (Mainland and Scott 1981), the result of a numerical calculation 
was that the minimum nonzero allowed value of orbital angular momentum 
was also 11. 
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